
NX-414: Brain-like computation and 
intelligence

Slide credit:

• Created by A Mathis

• 2025: Modified by M Schrimpf

Martin Schrimpf

Lecture 2, February 26th



Research group on computational 
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Co-running the platform.

Brief Intro

• Assistant Professor at EPFL since 6/2023
• Educational background in CS/ML
• PhD in neuro department

No formal office hours, but please email 
me if forum/TAs cannot help with a 
question.

go.epfl.ch/NeuroAI



• Normative models as a way to describe neural activity

• Population vectors to interpret neural activity

• Classic models and analyses

▪ Hebbian learning, PCA, Oja’s rule

▪ Gabor filters

▪ Sparse coding

Learning objectives today



What is the right language to describe the brain’s 
mechanisms?



Information theoretic

e.g. sparse coding, 
redundancy reduction, 
mutual information …

Utilitarian

e.g. recognize objects, 
chase prey, navigate …

Normative frameworks



Reminder: Cramer-Rao inequality and Fisher information

For any biased estimator it holds that

𝜎𝑒𝑠𝑡
2 𝑥 ≥

(1 + 𝑏′𝑒𝑠𝑡 𝑥 )2

𝐼 𝑥

Note that for unbiased estimators, we have

𝜎𝑒𝑠𝑡
2 𝑥 ≥

1

𝐼 𝑥

With Fisher information defined as

𝐼 𝑥 = ∫ 𝑝 𝑘|𝑥 −
𝜕2ln(𝑝 𝑘|𝑥 )

𝜕𝑥2
𝑑𝑘



Well-known estimators/decoders

Maximum likelihood estimator (MLE):

𝑥𝑀𝐿𝐸 𝑘 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑥𝑃 𝑘|𝑥

Maximum a posteriori (MAP) estimator:

𝑥𝑀𝐴𝑃 𝑘 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑥𝑃 𝑘|𝑥 𝑃 𝑥

Stimulus 
𝑥

Evoked response
𝑘

Estimator: 𝑥 ↦ 𝑘
(also “encoder, predictor”)

Decoder: 𝑘 ↦ 𝑥

Informed by only likelihood.
no “domain knowledge”

Informed by likelihood & prior
(P of stimulus being presented)

e.g. image ∈ ℝD e.g. firing rate ∈ ℝN

for N neurons



Ogawa & Miller, Encyclopedia of Comp Neuro 2013 Miller, Jacobs, Theunissen, J Neurophysiology 1991

Normalized responses of the four 
giant interneurons 

A simple decoder

Each of the four giant 
interneurons codes for a 
particular air current direction



An example decoder: Population vectors

Those tuning curves can be summarized as a half-wave rectified cosine:

𝑓 𝜑

𝑓𝑚𝑎𝑥 𝑖

= 𝑐𝑜𝑠 𝜑 − 𝜑𝑖 +

Let’s represent the wind direction as a vector 𝑣 instead of the angle. This is 
conveniently the same as:

𝑓 𝜑

𝑓𝑚𝑎𝑥 𝑖

= 𝑣 ⋅ v𝑖 +

Given evoked responses from our 4 interneurons, we can then estimate the wind 
direction as:

𝑣𝑒𝑠𝑡 =෍

𝑖

𝑘

𝑓𝑚𝑎𝑥 𝑖

⋅ v𝑖

This is called the population vector and works quite well. 



Hexagonal activity patterns of grid cells are optimal

Mathis et al., eLife 2015

McNaugthon et al., Nature Review Neuroscience 2006

Densest packing provides highest Fisher information.
Maximize spatial resolution/precision in 2D environments.



Limitations of using Fisher information 
to study the neural code

▪ This works best for parametric cases 
(i.e. with analytical formulas for the encoding model)

▪ Fisher information is local

▪ Only quantifies information of neural response, analysis only



Efficient coding hypothesis 

The nervous system should exploit the 

statistical regularities in the sensory data

Barlow, 1961
Attneave 1954

e.g., sparsity: instead of representing correlated features, 
encode decorrelated features.

e.g., predictive coding: instead of absolute information,  
encode only errors.



Unsupervised learning with classic methods

Consider data 𝑋 = {𝑥 𝑡 }1≤𝑡≤𝑇 for vectors 𝑥 𝑡 ∈ ℝ𝐷 .We use superscript for 
enumerating them, as we want to use subscript 𝑥𝑖 to denote the ith element. We will 
usually omit the superscript.

For a concrete example think, e.g., about flattened images of original dimension 𝐷
× 𝐷 for some square 𝐷 for a large number of images 𝑇.

Here are and in the following ⟨ . ⟩ averages over the omitted superscript 𝑡. 
Assuming the data have zero mean, i.e. 𝑥𝑖 = 0, then:

⟨𝑥𝑖
𝑡
⟩ = 1/𝑇෍

𝑡=1

𝑇

𝑥𝑖
𝑡



Let’s assume there are pairwise correlations present, i.e.:

𝑐𝑖𝑗: = ⟨𝑥𝑖 , 𝑥𝑗⟩ ≠ 0

Because the data have zero mean, ⟨𝑥𝑖⟩ = 0, this means that they are statistically 
dependent. 

That’s because otherwise ⟨𝑥𝑖 , 𝑥𝑗⟩ = ⟨𝑥𝑖⟩⟨𝑥𝑗⟩ = 0, which is not possible.



Reminder: Principal component analysis (PCA)

The goal of PCA is to find coordinates 𝑒𝑖 for 𝑅𝐷 such that:

𝑦𝑖 = 𝑒𝑖 ⋅ 𝑥 and ⟨𝑦𝑖 , 𝑦𝑗⟩ = 0

By definition the coordinates are orthonormal:

⟨𝑒𝑖 , 𝑒𝑗⟩ = 0 if 𝑖 ≠ 𝑗 and 𝑒𝑖 = 1. 

Let’s assume the 𝑒𝑖 are ordered by the variance of 𝑦𝑖 such that:

⟨𝑦1
2⟩ ≥ ⟨𝑦2

2⟩ ≥ ⋯ ⟨𝑦𝐷
2⟩



Adapted from Olshausen



Linear Hebbian learning

Donald Hebb: “What fires together, wires together.”

Donald Hebb (1904 –1985)

Wikipedia



Linear Hebbian learning

Donald Hebb: “What fires together, wires together.”

Thus, for a linear neuron:

𝑦 =෍

𝑖

𝑤𝑖 𝑥𝑖

each weight should change proportionally to the correlation of 𝑦 and 𝑥𝑖, i.e.:

𝑤′𝑖 ∝ ⟨𝑦, 𝑥𝑖⟩



Linear Hebbian learning

𝑤′𝑖 ∝ ⟨𝑦, 𝑥𝑖⟩

Let’s rewrite this based on the activity of the neuron:

𝑤′𝑖 ∝ ⟨෍

𝑗

𝑤𝑗 𝑥𝑗 , 𝑥𝑖⟩ ≈෍

𝑗

𝑤𝑗 ⟨𝑥𝑗 , 𝑥𝑖⟩

Thus, for covariance matrix 𝐶 = 𝑐𝑖,𝑗 we get the following differential 
equation that governs the evolution of the weights:

𝑤′ = 𝐶𝑤



𝑤′ = 𝐶𝑤

But how will the weights change?

Let’s consider the trivial 1D case first:
𝑤′ = 𝑐𝑤

This first-order, linear ordinary differential equation 
is solved by:

𝑤 𝑡 = 𝑤 0 ⋅ exp 𝑐𝑡 .

So, the weight will increase exponentially (𝑐 > 0), 
or go to zero (𝑐 < 0). 

The magnitude of the constant 𝑐 determines the speed.



As 𝐶 is symmetric (𝑐𝑖,𝑗 = 𝑐𝑗,𝑖), we can decompose it into:

𝐶 = U𝐷U𝑇

with U = 𝑒1, … , 𝑒𝐷 being an orthonormal matrix 
such that < 𝑒𝑖 , 𝑒𝑗 >= 𝛿𝑖,𝑗 for Kronecker delta

and

𝐷 = diag 𝜆1, … , 𝜆𝐷 .

Geometrically, U and U𝑇 are rotation matrices and 𝐷 a scaling matrix.

The 𝑒𝑖 are eigenvectors with eigenvalue 𝜆𝑖 ,i.e. 𝐶𝑒𝑖 = 𝜆𝑖𝑒𝑖



Let’s change the coordinates: 𝑣 = U𝑇w
𝑣′ = 𝐷𝑣

Then:

𝑣 𝑡 = exp 𝐷𝑡 𝑣 0 = exp 𝜆𝑖𝑡 𝑣𝑖 0 𝑖

So just like in the 1D case, each component will grow/shrink exponentially (matrix is positive def., 
so no shrinking).

Qualitatively, if 𝜆1 > 𝜆𝑖 ,then quickly this component will dominate all others. 

So 𝑤 will approximately grow along 𝑒1 -- i.e. the direction of the first principal component.

Shown differently, one can find for some constants ki:

w 𝑡 = k1exp 𝜆1𝑡 𝑒1 + k2exp 𝜆2𝑡 𝑒2+... + kDexp 𝜆D𝑡 𝑒D

Thus, < w 𝑡 /|𝑤|, 𝑒𝑖 >→ 0 for 𝑖 ≠ 1 and < w 𝑡 /|𝑤|, 𝑒𝑖 >→ 1 for 𝑖 = 1



Linear Hebbian learning

We have seen that for 𝐰′ ∝ 𝐂𝐰 the weights grow (indefinitely) along 
the direction of the eigenvector of the covariance matrix 𝐂. In other 
words, y will compute the projection of the data onto the first 
principal component.

To constrain the growth, one can modify Hebb’s rule…

For more details, see Neural Dynamics by W. Gerstner et al.

https://neuronaldynamics.epfl.ch/online/Ch19.S3.html



Oja’s rule

𝑤′ = ⟨𝑦 𝑥 − 𝑦𝑤 ⟩

We note ⟨𝑦 𝑥 − 𝑦𝑤 ⟩ = ⟨𝑦𝑥⟩ − ⟨𝑦2⟩𝑤. The first term is Hebb’s rule and the second one 
constrains growth.

What is the equilibrium solution, 𝑤′ = 0?

𝐶𝑤 =< 𝑦2 > 𝑤. Thus, by design 𝑤 will be an eigenvector of 𝐶.

Since
< 𝑦2 >= 𝑤𝑇𝐶𝑤 = 𝑤𝑇 < 𝑦2 > 𝑤 =< 𝑦2 > 𝑤 2

we find 𝑤 = 1, indeed one can prove that it is the strongest eigenvector.



Learning multiple eigenvectors: Sanger’s rule

Consider a system of 𝑚 neurons, then the following rule:

𝑤′𝑖 = ⟨𝑦𝑖 𝑥 −෍

𝑗≤𝑖

𝑦𝑗 𝑤𝑗 ⟩

learns the first 𝑚 principal components.

Intuitively, this works as one removes the explained variance of the largest principal 
components and then is left with Oja’s rule. E.g., let’s assume 𝑤1 → 𝑒1, then:

𝑤′2 = ⟨𝑦2 𝑥 − 𝑦1𝑒1 − 𝑦2𝑤2 ⟩

So 𝑤2 will point in the direction of the largest principal component of 

𝑋 = {𝑥 𝑡 − ⟨𝑥 𝑡 , 𝑒1⟩}1≤𝑡≤𝑇. That’s of course 𝑒2.



Let’s look at a concrete example, where the data is given by local patches 
from images. That’s something the visual system cares about….



How should natural images be represented?

𝐼 𝑥, 𝑦 =෍

𝑖

𝑎𝑖 𝜙𝑖 𝑥, 𝑦 + 𝜖 𝑥, 𝑦

Matterhorn

Wikipedia

𝐸 =
1

2
𝐼 − 𝛷𝑎 2

Let’s assume that images are represented by linear 
superpositions of (not necessarily) orthogonal basis 
functions:



What are the principal components of naturalistic 
images?

Extract patches from natural images, e.g. 16 x 16 pixels



Olshausen & Field, 1996 NatureLearned weights with PCA (Sanger’s rule)



Orientation selectivity

Hubel &Wiesel 1959



Gabor function

A popular mathematical approximation of the spatial receptive field of a simple cell is 
given by the Gabor function:

f 𝑥, 𝑦 =
1

2𝜋𝜎𝑥𝜎𝑦
⋅ exp −

𝑥2

2𝜎𝑥
2 −

𝑦2

2𝜎𝑦
2 ⋅ cos 𝑘𝑥 − 𝜑

with: 

▪ 𝜎𝑥, 𝜎𝑦 determine the spatial receptive field in x and y direction, respectively 

▪ 𝑘 is the preferred spatial frequency (i.e. the spacing of light/dark bars that give maximal 
response) 

▪ 𝜑 is the preferred spatial phase 

▪ for simplicity this function has coordinates so that border of On/Off region are parallel to y-axis



Example visualization (see exercises)



Single units and sensation: a neuron doctrine for 
perceptual psychology?

1. To understand nervous function one needs to look at interactions at a cellular level, rather than

either a more macroscopic or microscopic level, because behaviour depends upon the organized

pattern of these intercellular interactions.

2. The sensory system is organized to achieve as complete a representation of the sensory stimulus

as possible with the minimum number of active neurons.

….

Barlow, 1972 Perception



V1 is highly overcomplete

Barlow, 1981
Felleman and Van Essen Cerebral Cortex 1991



Different types of coding schemes

sparse codesdense codes local codes



Reminder: an example grandmother cell

Quiroga, Cell 2019

Concept cells



Reminder: grid cells provide a more “dense” code

McNaugthon et al., Nature Review Neuroscience 2006



Reminder: place code is a sparse code

Wilson and McNaughton, Science 1994

Experience creates correlated replay during sleep!



Sparse coding
𝐼 𝑥, 𝑦 =෍

𝑖

𝑎𝑖 𝜙𝑖 𝑥, 𝑦 + 𝜖 𝑥, 𝑦

𝐸 =
1

2
𝐼 − 𝛷𝑎 2

𝜙 𝑥, 𝑦

Matterhorn

Wikipedia

Sparse activity!

Olshausen & Field, 1996 Nature



Gabor-filters create sparse activations

Olshausen & Field, 1996 Nature



Different types of coding schemes

sparse codesdense codes local codes



Energy function

𝐸 =
1

2
𝐼 − 𝛷𝑎 2 + 𝜆෍

𝑖

𝐶 𝑎𝑖

Preserve information Sparse activity



Sparse coding model of V1

𝐼 𝑥, 𝑦 =෍

𝑖

𝑎𝑖 𝜙𝑖 𝑥, 𝑦 + 𝜖 𝑥, 𝑦

Olshausen & Field, 1996 Nature



Cost function for sparsity

𝐶 𝑎𝑖 = 𝑙𝑜𝑔 1 + 𝑎𝑖
2

Note: other cost functions are possible, e.g. |a|
Olshausen & Field, 1996 Nature

𝐸 =
1

2
𝐼 − 𝛷𝑎 2 + 𝜆෍

𝑖

𝐶 𝑎𝑖



Sparse coding recovers latent structure of data

Olshausen & Field, 1996 Nature



Results of training sparse coding model on 16 x 16 patches

Olshausen & Field, 1996 Nature



Coefficients are computed via gradient descent

𝜏𝑎′𝑖 = −
𝜕𝐸

𝜕𝑎𝑖

Olshausen & Field, 1996 Nature



Coefficients are computed via gradient descent

𝜏𝑎′𝑖 = −
𝜕𝐸

𝜕𝑎𝑖
= 𝑏𝑖 −෍

𝑗≠𝑖

𝐺𝑖,𝑗 𝑎𝑗 − 𝑓𝜆 𝑎𝑖

𝑏𝑖 =෍

𝑥,𝑦

𝜙𝑖 𝑥, 𝑦 𝐼 𝑥, 𝑦

𝐺𝑖,𝑗 =෍

𝑥,𝑦

𝜙𝑖 𝑥, 𝑦 𝜙𝑗 𝑥, 𝑦

𝑓𝜆 𝑎𝑖 = 𝑎𝑖 + 𝜆𝐶′ 𝑎𝑖

Olshausen & Field, 1996 Nature



Learning rule for the basis functions

𝛥𝜙𝑖 = −𝜂
𝜕𝐸

𝜕𝜙𝑖
= 𝐼 − 𝛷ො𝑎 ො𝑎𝑖

Olshausen & Field, 1996 Nature



Coefficients can be computed by leaky 
integrators and lateral inhibition

Rozell et al., 2008 Neural Computation



Sparse coding model of V1

Olshausen & Field, 1996 Nature

Activity becomes sparser 
over training:

Olshausen & Field, 2004 Current Opin. In Neurobio



Efficient codes for natural sounds

Experimental auditory kernels
from cat auditory nerve

Predicted auditory kernels

Smith & Lewicki, 2006 Nature



Evidence for sparse coding has been found in 
many different sensory areas

▪ Mushroom body, locust (Laurent)

▪ HVC, zebra finch (Fee)

▪ Auditory cortex, mouse (DeWeese & Zador)

▪ Hippocampus, rat/primate (Thomson & Best; Skaggs)

▪ Barrel cortex, rat (Brecht)

▪ …

Olshausen & Field, 2004 Current Opin. In Neurobio



• These simple models have been most effective in describing early sensory 
responses (e.g., primary visual/auditory cortex). They are often less effective the 
further you move away from sensory input.

• Because these models described a lot of neural properties at the time, computational 
neuroscience has largely ascribed to focusing on simplicity and localized 
mechanisms, with the hope that these principles can eventually be 
scaled/assembled into a holistic computational description of the brain.

• Personal opinion: the sole focus on simplicity and individual mechanisms is holding 
our field back. To make sense of a system as complex of the brain, we need to 
embrace the complexity in the models we build and gain intuition at a higher level of 
abstraction.

Limitations



• Representation learning with unsupervised tasks provides a normative framework for 
studying tuning curves in the nervous system

• Oja’s rule converges to the strongest eigenvector of the data

• PCA on natural image patches does not provide a localized, oriented representation 
(and thus does not resemble primary visual cortex V1)

• Sparse coding predicts properties across a wide range of sensory areas incl. V1

Exercises: you will implement Olshausen’s model! 

Take-home messages


