cPrL

NX-414: Brain-like computation and
intelligence

Martin Schrimpf

Lecture 2, February 26t

Slide credit:
- Created by A Mathis
- 2025: Modified by M Schrimpf



=PrL

Brief Intro NeuroAl Lab  go.epfl.ch/NeuroAl

* Assistant Professor at EPFL since 6/2023

* Educational background in CS/ML Research group on computational
* PhDin neuro department digital-twin models of the brain.

No formal office hours, but please email Focus on vision and language.
me if forum/TAs cannot help with a
guestion.

Co-running the platform.




=PFL  Leaming objectives today

* Normative models as a way to describe neural activity
» Population vectors to interpret neural activity

» Classic models and analyses
= Hebbian learning, PCA, Oja’s rule
= Gabor filters
= Sparse coding



=PFL What s the right language to describe the brain’s
mechanisms?

Original
texture
photograph

Naturallstic

texture

Spectrally-
matched

noise

A functional and perceptual sighature of the second
visual area in primates

Jeremy Freeman'->7, Corey M Ziemba'-®, David ] Heeger!-2, Eero P Simoncelli!~*¢ & ] Anthony Movshon!-%6

There is no generally accepted account of the function of the second visual cortical area (V2), partly because no simple response
properties robustly distinguish V2 neurons from those in primary visual cortex (V1). We constructed synthetic stimuli replicating
the higher-order statistical dependencies found in natural texture images and used them to stimulate macaque V1 and V2
neurons. Most V2 cells responded more vigorously to these textures than to control stimuli lacking naturalistic structure; V1 cells
did not. Functional magnetic resonance imaging (fMRI) measurements in humans revealed differences between V1 and V2 that
paralleled the neuronal measurements. The ability of human observers to detect naturalistic structure in different types of texture
was well predicted by the strength of neuronal and fMRI responses in V2 but not in V1. Together, these results reveal a particular
functional role for V2 in the representation of natural image structure.
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=PrL Normative frameworks

Information theoretic Utilitarian
e.g. sparse coding, e.g. recognize objects,
redundancy reduction, chase prey, navigate ...

mutual information ...




=PrL
Reminder: Cramer-Rao inequality and Fisher information

For any biased estimator it holds that

0.2 t(x) > (1 + b’est(x))z

1(x)

Note that for unbiased estimators, we have

O-ezst (x) =

1(x)

With Fisher information defined as

1(x) = | p(k|x) (—

07In(p(k|x))
) ae



=Pl Well-known estimators/decoders

Estimator: x » k

Stimulus Evoked response » . )
| — I (also “encoder, predictor”)
e.g.image € RP e.g. firing rate € RN Decoder: k = x

for N neurons

Maximum likelihood estimator (MLE):

xyre(k) = argmax, P (k|x)

‘\ Informed by only likelihood.

) .. ) no “domain knowledge”
Maximum a posteriori (MAP) estimator:

xmap (k) = argmax,P(k|x)P(x)

\ Informed by likelihood & prior
(P of stimulus being presented)



=F7L A simple decoder

Normalized responses of the four
giant interneurons
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Fig. 1 The cricket cercal system. (a) Gryllus bimaculatus (female). The cerci are the two antenna-like structures, .

covered with fine hairs, extending from the rear of the abdomen. (b) Computer reconstruction of the outline (blue) of Interneurons COd €s fO ra

a terminal abdominal ganglion (TAG) with several reconstructed nerve cells. A reconstruction of a single identified pa rticular air current direction
giant interneuron (GI right 10-3) is shown in blue, and several filiform sensory afferent arbors are shown in other

colors. (¢) Micrograph of the GI left 10-2 and filiform afferent stained with fluorescent dye

Ogawa & Miller, Encyclopedia of Comp Neuro 2013 Miller, Jacobs, Theunissen, J Neurophysiology 1991



=P*L An example decoder: Population vectors

Those tuning curves can be summarized as a half-wave rectified cosine:

qp 1.0+ A L10—3 L 10—2 ’ 10—2 RII?:S 1 -
f( ) ’ : \ ’I’ i ?I
[COS((p (pl)]+ 0.54 |
fmax i :

0.0

360/0 80 180 270 360/0

Let’s represent the wind direction as a vector v instead of the angle. This is
conveniently the same as:

<]];(:jj>l =[v- Vi]+

Given evoked responses from our 4 interneurons, we can then estimate the wind
direction as:

k
Vest = § < ) " Vi
- fmax i

This is called the population vector and works quite well

270




=PFL Hexagonal activity pattems of grid cells are optimal

Densest packing provides highest Fisher information.
Maximize spatial resolution/precision in 2D environments.

McNaugthon et al., Nature Review Neuroscience 2006

Mathis et al., eLife 2015
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Limitations of using Fisher information
to study the neural code

= This works best for parametric cases
(i.e. with analytical formulas for the encoding model)

= Fisher information is local
= Only quantifies information of neural response, analysis only



Efficient coding hypothesis

The nervous system should exploit the
statistical regularities in the sensory data

e.g., sparsity: instead of representing correlated features,
encode decorrelated features.

e.g., predictive coding: instead of absolute information,
encode only errors.

Barlow, 1961
Attneave 1954



L=

=L Unsupervised leaming with classic methods

Consider data X = {x(®}, .,y for vectors x(¥ € R .We use superscript for
enumerating them, as we want to use subscript x; to denote the ith element. We will
usually omit the superscript.

For a concrete example think, e.g., about flattened images of original dimension VD
x /D for some square D for a large number of images T.

Here are and in the following ( . ) averages over the omitted superscript t.
Assuming the data have zero mean, i.e. (x;) =T0, then:

(xi(t)) = 1/Tz xl-(t)
t=1



=PrL

Let’'s assume there are pairwise correlations present, i.e.:

Cij: = (xl-,xj) # 0

Because the data have zero mean, (x;) = 0, this means that they are statistically
dependent.

That's because otherwise (x;, x;) = (x;){x;) = 0, which is not possible.
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=PFL Reminder: Principal component analysis (PCA)

The goal of PCA is to find coordinates e; for R? such that:
yi=e¢;-xand (y;,y;) =0
By definition the coordinates are orthonormal:
(ei,ej) = 0if i # jand |e;| = 1.
Let’'s assume the e; are ordered by the variance of y; such that:

(Vi) = (y5) = - (¥5)
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Gaussian

non-Gaussian

Adapted from Olshausen



=P7L Linear Hebbian leaming

Donald Hebb: “What fires together, wires together.”

X ] — W
1
X 3 Sl
2 L Donald Hebb (1904 —1985)
—w Wikipedia
Coow I
x" i w
0

nputs weights bias output



xl—wl

=PFL Linear Hebbian leaming % —wZ:\j :
X3 — W3
_ y
Donald Hebb: “What fires together, wires together.” 3 !

wﬂ
n

Wo
inputs weights bias output

Thus, for a linear neuron:

y:zwixi
i

each weight should change proportionally to the correlation of y and x;, i.e.:

W,i X (y; xi)



=P7L  Linear Hebbian leaming
w'i & (Y, x;)
Let’s rewrite this based on the activity of the neuron:

W,i X (Z W;j Xj,Xi> ~ Z W;j (xj,xl-)
J J

Thus, for covariance matrix C = (¢; ;) we get the following differential
equation that governs the evolution of the weights:

w' = Cw



=PrL

But how will the weights change?

Let’'s consider the trivial 1D case first;

This first-order, linear ordinary differential equation
IS solved by:

w(t) = w(0) - exp(ct).

explct)

So, the weight will increase exponentially (c > 0),
or go to zero (c < 0).

The magnitude of the constant ¢ determines the speed.
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=PrL

As C Is symmetric (c; j = ¢; ;), we can decompose it into:

C =UDU”

with U = (eq, ..., ep) being an orthonormal matrix
such that < e;, e; >= §; ; for Kronecker delta

and
D = d|ag(ll, '"'AD)'

Geometrically, U and U7 are rotation matrices and D a scaling matrix.
The e; are eigenvectors with eigenvalue A; ,i.e. Ce; = A;e¢;



£PFL Let’s change the coordinates: v = UTw

Then:
v(t) = exp(Dt)v(0) = (exp(/lit)vi(O))i

So just like in the 1D case, each component will grow/sheink exponentially (matrix is positive def.,,
so no shrinking).

Qualitatively, if A; > A; ,then quickly this component will dominate all others.
So w will approximately grow along e; -- i.e. the direction of the first principal component.
Shown differently, one can find for some constants k;:

w(t) = kyexp(A;t)e; + kyoexp(A,t)e,+... + Kpexp(Apt)ep

Thus, < w(t)/|w|,e; > - 0fori # 1and < w(t)/|w|,e; >—-> 1fori=1



P

=

L

Linear Hebbian leaming

We have seen that for w' « Cw the weights grow (indefinitely) along
the direction of the eigenvector of the covariance matrix C. In other
words, y will compute the projection of the data onto the first
principal component.

To constrain the growth, one can modify Hebb’s rule...

For more details, see Neural Dynamics by W. Gerstner et al.
https://neuronaldynamics.epfl.ch/online/Ch19.S3.htm|



=P7L - Oja’s rule
w' = (y(x — yw))

We note (y(x — yw)) = (yx) — (y?)w. The first term is Hebb’s rule and the second one
constrains growth.

What is the equilibrium solution, w' = 0?
Cw =< y? > w. Thus, by design w will be an eigenvector of C.

Since
<yi>=wltw=wl <y? >w=<y%>|w|?

we find |w| = 1, indeed one can prove that it is the strongest eigenvector.



=F7L  Leaming multiple eigenvectors: Sanger’s rule

Consider a system of m neurons, then the following rule:

w'i = (y; (x - Zyj Wj))

Jj<i

learns the first m principal components.

Intuitively, this works as one removes the explained variance of the largest principal
components and then is left with Oja’s rule. E.g., let's assume w; — e, then:

w'y = (y2(x — y1e1 — yow3))
So w, will point in the direction of the largest principal component of

X ={x® —(x® e)};<,<r. That's of course e,.



=PrL

Let’s look at a concrete example, where the data is given by local patches
from images. That's something the visual system cares about....



=F*L " How should natural images be represented?

= Matterhorn
Wikipedia

Let’s assume that images are represented by linear
superpositions of (not necessarily) orthogonal basis
functions:

I(x,y) = ) a;¢;i(x,y) +elx,y)

E—1|I dal?



=P7L What are the principal components of naturalistic
Images?

Extract patches from natural images, e.g. 16 x 16 pixels




=PrL

Olshausen & Field, 1996 Nature

Learned weights with PCA (Sanger’s rule)



=PL  Orientation selectivity
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Fig. 2. Responses of a unit to stimulation with circular spots of light. Receptive field located in )
area centralis of contralateral eye. (This unit could also be activated by the ipsilateral eye.) E=imsat s *

a, 1° spot in the centre region; b, same spot displaced 3° to the right; ¢, 8° spot covering entire

receptive field. Stimulus and background intensities and conventions as in Fig. 1. Scale, 6°. Fig. 3. Same unit as in Fig. 2. A, responses to shining a rectangular light spot, 1° x 8°; centre of
slit superimposed on centre of receptive field; successive stimuli rotated clockwise, as shown

to left of figure. B, responses to a 1° x 5° slit oriented in various directions, with one end
always covering the centre of the receptive field : note that this central region evoked responses
when stimulated alone (Fig. 2a). Stimulus and background intensities as in Fig. 1; stimulus
duration 1 sec.

- Hubel &Wiesel 1959



=PFL  Gabor function

A popular mathematical approximation of the spatial receptive field of a simple cell is
given by the Gabor function:

xZ yZ

f(x,y) = ﬁ - exp (— = ) - cos(kx — @)

205 203

with:
= g, g, determine the spatial receptive field in x and y direction, respectively

= k is the preferred spatial frequency (i.e. the spacing of light/dark bars that give maximal
response)

= ¢ is the preferred spatial phase
= for simplicity this function has coordinates so that border of On/Off region are parallel to y-axis
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Example visualization (see exercises)
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=PFL  Single units and sensation: a neuron doctrine for
perceptual psychology?

1. To understand nervous function one needs to look at interactions at a cellular level, rather than
either a more macroscopic or microscopic level, because behaviour depends upon the organized

pattern of these intercellular interactions.

2. The sensory system is organized to achieve as complete a representation of the sensory stimulus
as possible with the minimum number of active neurons.

- Barlow, 1972 Perception
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=P7L V1 is highly overcomplete

LGN
afferents -
IVb
layer 4
cortex
IVe

Felleman and Van Essen Cerebral Cortex 1991

Barlow, 1981



=PrL  Different types of coding schemes

local codes

dense codes sparse codes
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=P*LReminder: an example grandmother cell
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=F7L Reminder: grid cells provide a more “dense” code

McNaugthon et al., Nature Review Neuroscience 2006



=PFL  Reminder: place code is a sparse code
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I(x,y) = ) a;¢i(x,y) +€(x,y)

Sparse activity!

External Internal
model

~world e ~

1 (x,y) d,(x,y) aj

Mteror
= Wikipedia
Olshausen & Field, 1996 Nature



=PFL Gabor-filters create sparse activations
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Olshausen & Field, 1996 Nature



=PrL  Different types of coding schemes

local codes

dense codes sparse codes
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=PFL  Energy function

1
E=§|I—d>a|2+AZC(ai)

e

Preserve information Sparse activity



=Pl Sparse coding model of V1

2
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Olshausen & Field, 1996 Nature



=PFL  Cost function for sparsity

1
E=§|I—d)a|2+AZC(ai)
[

C(a) C(a;) = log(1 + af)

di

Note: other cost functions are possible, e.g. |a|
Olshausen & Field, 1996 Nature



=PFL  Sparse coding recovers latent structure of data

a  Sparse pixels k- lol ]
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Olshausen & Field, 1996 Nature



=PFL  Results of training sparse coding model on 16 x 16 patches
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Olshausen & Field, 1996 Nature
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Olshausen & Field, 1996 Nature
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=PFL  Coefficients are computed via gradient descent

. OE
Q= o= b; _zGi,j a; — f(a;)
l

J#

bi — z¢l (x,y)](x,y)
X,y

Gij = ) b (6 )¢50, )
x,y
fala)) = a; + AC'(a;)

Olshausen & Field, 1996 Nature



=PFL  Leaming rule for the basis functions

oE
Ay = =05 = (= PG,
l

Olshausen & Field, 1996 Nature



=PFL  Coefficients can be computed by leaky
Integrators and lateral inhibition

Y

u(t) p—— a1(?)
az(t) (@2, @1)
az(t)

\/W —a ua(t)
Vi (t) ¢ Um, (;J; ; a:n (t) :T,\ (Um (f;)) S (t) — O LS (t) ] ®
_T — . az(t) (@2, @ ar)

Tx(:)

Vin(t) = (@m.8(t)) = L Ta(un(t)) (@m, @n)

n#m

upn(t) ——san(t)

Y

u(t) = f(u(t)) =% [b(t) — u(t) — (D' — 1) a(t)],

a(t) =T, (u(t)) .

Rozell et al., 2008 Neural Computation



=PrL  Sparse coding model of V1 %

External Internal
“world ™ ~7model

Outputs of sparse coding network (a;)
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Olshausen & Field, 2004 Current Opin. In Neurobio Olshausen & Field, 1996 Nature



=PFL  Efficient codes for natural sounds

a U M V
WAMMMNWWM/\W X(O)=) > b (t —1]") + (1)
WM <ﬂ f .ti WW Predicted auditory kernels

Experimental auditory kernels

from cat auditory nerve

Smith & Lewicki, 2006 Nature
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L Evidence for sparse coding has been found in
many different sensory areas

Mushroom body, locust (Laurent)
HVC, zebra finch (Fee)
Auditory cortex, mouse (DeWeese & Zador)

Hippocampus, rat/primate (Thomson & Best; Skaggs)

Barrel cortex, rat (Brecht)

Olshausen & Field, 2004 Current Opin. In Neurobio



=PFL  Limitations

* These simple models have been most effective in describing early sensory
responses (e.g., primary visual/auditory cortex). They are often less effective the
further you move away from sensory input.

» Because these models described a lot of neural properties at the time, computational
neuroscience has largely ascribed to focusing on simplicity and localized
mechanisms, with the hope that these principles can eventually be
scaled/assembled into a holistic computational description of the brain.

» Personal opinion: the sole focus on simplicity and individual mechanisms is holding
our field back. To make sense of a system as complex of the brain, we need to
embrace the complexity in the models we build and gain intuition at a higher level of
abstraction.



=PFL  Take-home messages

Representation learning with unsupervised tasks provides a normative framework for
studying tuning curves in the nervous system

Oja’s rule converges to the strongest eigenvector of the data

PCA on natural image patches does not provide a localized, oriented representation
(and thus does not resemble primary visual cortex V1)

Sparse coding predicts properties across a wide range of sensory areas incl. V1

Exercises: you will implement Olshausen’s model!



